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Starting from the microscopic Hamiltonian describing free electrons in a periodic lattice, we derive the
Hamiltonian appropriate to Frenkel excitons. This is done through a grouping of terms different from the one
leading to Wannier excitons. This grouping makes the atomic states appear as a relevant basis to describe
Frenkel excitons in the second quantization. Using them, we derive the Frenkel exciton creation operators as
well as the commutators which rule these operators and which make the Frenkel excitons differ from elemen-
tary bosons. The main goal of the present paper is to provide the necessary grounds for future works on Frenkel
exciton many-body effects, with the composite nature of these particles treated exactly through a procedure
similar to the one we have recently developed for Wannier excitons.
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I. INTRODUCTION

The absorption of photons in a dielectric solid can lead to
delocalized excitations called excitons. These excitons are
essentially of two types: the Wannier excitons1 and the Fren-
kel excitons.2

Wannier excitons are formed in inorganic semiconductors.
The relative motion of the electron and the hole from which
the excitons are made encompasses hundreds of unit cells.
This leads to a small binding energy ��10 meV� and a large
Bohr radius ��10 nm�. As a consequence, Wannier excitons
start to interact at relatively low densities, giving rise to a
large variety of many-body effects associated with optical
nonlinearities, which makes these conventional semiconduc-
tors usable in today’s technologies.

The second type of exciton, known as Frenkel exciton, is
commonly found in organic crystals. These crystals are of
potential importance for future electronic devices, which
makes them under current intensive studies.3–8 Frenkel exci-
tons are formed with electron and hole localized on a small
scale, of the order of a single molecular block ��1 nm�, the
typical binding energy being of the order of 1 eV. Due to
interactions between blocks, these single molecule excita-
tions are transferred from site to site, giving rise to a wave
known as a Frenkel exciton.

These pictures can be qualitatively understood by noting
that, in conventional �inorganic� semiconductors, the relative
dielectric constant is rather large ��10�, which makes the
screening of the interaction between carriers quite strong. As
a result, the attraction between electrons and holes is weak,
which explains the large extension of their relative motion
wave function. On the contrary, the small relative dielectric
constant of molecular crystals ��1� leads to a strong
electron-hole attraction which localizes the pair on a system
unit cell.

The separation between Wannier and Frenkel excitons, of
course, is not very sharp. The limitations of the simple Fren-
kel picture for excitons in organic semiconductors are well
known, see, e.g., the review in Ref. 9 and the recent work in
Ref. 5. Under certain conditions, it is necessary to introduce

“charge-transfer exciton” in which the electron and the hole
are located in different sites, with similarity to Wannier ex-
citons for which the distance between electron and hole is
large compared to the ion-ion distance. Usually, the lowest
energy charge-transfer exciton has a wave function extended
over two nearest neighbor sites, the electron being localized
on the acceptor and the hole on the donor. Along the same
line, recent progresses in device nanofabrication now allow
one to obtain an organic-inorganic semiconductor structure
in which the hybridization between Frenkel and Wannier ex-
citons can be produced.3,4

Due to their small exciton Bohr radius, interactions be-
tween Frenkel excitons are expected to occur at a much
larger density than the one at which many-body effects be-
tween Wannier excitons start to be noticeable. This comes
from the fact that the dimensionless parameter which con-
trols these many-body effects is

� = N�ax/L�D, �1.1�

where ax is the exciton Bohr radius, L the sample size, D the
space dimension, and N the exciton number, the exciton den-
sity being n=N /LD.

Most likely, as for Wannier excitons, interactions between
Frenkel excitons are going to be of importance in electronic
devices constructed with organic semiconductors. This is
why a correct treatment of these interactions is highly desir-
able. Being made of indistinguishable carriers, Frenkel exci-
tons, like Wannier excitons, are not well-defined objects,
which makes the proper identification of the interactions be-
tween excitons not possible. As a direct consequence, one
cannot describe these interactions through a potential, as usu-
ally done because of lack of a correct procedure.

Over the past few years, we have developed a many-body
theory10,11 for Wannier excitons, in which the composite na-
ture of the particles is treated exactly. We have shown that
Wannier excitons predominantly interact through the Pauli
exclusion principle which exists between their fermionic
components. This exclusion gives rise to very many carrier
exchanges between excitons which are nicely visualized
through Shiva diagrams,12 rather different from Feynman
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diagrams due to the composite character of the particles. All
our works on Wannier excitons end with the same conclu-
sion: it is not possible to replace composite excitons by el-
ementary excitons, as commonly done through sophisticated
bosonization procedures;13 either one misses terms as large
as the ones kept or, in optical nonlinear effects, one even
misses the dominant terms.14 This can be readily seen from a
dimensional argument: the Pauli scatterings associated with
carrier exchanges are dimensionless, while the Coulomb
scatterings are energylike quantities, so that they have to
appear with an energy denominator, which can only be a
photon detuning. This makes these Coulomb terms com-
pletely negligible in front of the pure exchange terms
�missed with bosonized excitons� when unabsorbed photons
have a large detuning.

The development of a similar procedure for Frenkel exci-
tons requires that a second quantization formalism for these
excitons be settled on a clean basis in order to possibly keep
their composite boson nature exactly all over the calcula-
tions. Note that the second quantization formalism for Fren-
kel excitons is already used in Refs. 15–20. We discuss dif-
ferences between the results of these papers and our results
in Sec. VII.

In this work on Frenkel excitons, we propose a micro-
scopic approach to the description of these excitons based on
a second quantization formalism, starting from the Hamil-
tonian of free electrons in a periodic lattice. Through a
grouping of terms different from the one leading to Wannier
excitons, we introduce the atomic states as a physically rel-
evant one-electron basis for Frenkel excitons and we rewrite
the system Hamiltonian in terms of electrons and holes lo-
calized on atomic sites in order to have a precise description
of the interactions. Since we use a second quantization
scheme in terms of electrons and holes separately and not in
terms of their product Bn

† as usually done, our approach au-
tomatically takes into account the fermionic composite na-
ture of the particles forming the Frenkel excitons. This is
going to be of crucial importance for a proper study of many-
body effects involving these excitons. The present prelimi-
nary work actually provides the necessary grounds for fur-
ther works on Frenkel exciton systems. In a forthcoming
publication, we are going to use this second quantization
formalism to derive the Coulomb and Pauli scatterings of
two Frenkel excitons: these are the elementary scatterings on
which all many-body effects dealing with excitons are based.
We will then use these scatterings to calculate the ground
state energy of N Frenkel excitons in the low density limit, a
physical quantity of basic relevance.

The present paper is organized as follows. In Sec. II, we
start with the first quantization description of a periodic sys-
tem made of interacting ions and electrons. We discuss the
conceptual difference between Wannier and Frenkel excitons
which leads to a different grouping of terms in the Hamil-
tonian. We introduce the atomic states as the appropriate
one-electron basis for the problem when the tight-binding
approximation, which neglects the overlaps between the
atomic wave functions for electrons on different sites, is
valid. We also discuss the conceptual difficulty associated
with the atomic basis compared to the free electron and hole
basis used in the case of Wannier excitons. In Sec. III, we

derive the semiconductor Hamiltonian appropriate to Frenkel
excitons in second quantization using this atomic basis. In
Sec. IV, we switch to holes and we reduce the Hamiltonian to
the terms which conserve the number of electron-hole pairs.
We then discuss all these terms with particular attention to
the one responsible for the excitation transfer from site to
site. In Sec. V, we identify the lowest excited states of the
Hamiltonian in the absence of interactions between sites and
we show that they form a degenerate subspace. This degen-
eracy is split to give rise to Frenkel excitons by the intersite
interactions. They are introduced in Sec. VI, which is de-
voted to the precise derivation of the creation operators for
Frenkel excitons and the commutation rules which govern
these operators. The precise handling of these commutators
are at the basis of the many-body theory we are going to
construct. We show that, like Wannier excitons, Frenkel ex-
citons are composite bosons, their commutation rules differ-
ing from the ones of elementary bosons due to the fermionic
nature of the electrons and holes forming these excitons. Pre-
vious works on Frenkel excitons in second quantization are
discussed in Sec. VII. In Sec. VIII, we collect the main re-
sults of this paper and conclude.

II. FIRST QUANTIZATION DESCRIPTION

A. Semiconductor Hamiltonian in first quantization

Let us consider Ns electrons with charge −�e�, located at
ri, and Ns ions with charge +�e�, located at Rn, with i and n
running from 1 to the number of sites Ns. In this work on
Frenkel excitons, we are going to forget all spin degrees of
freedom for the sake of simplicity. This physically corre-
sponds to all the electrons having the same spin. This also
means that we drop all degeneracies coming from the orbital
part of the electronic levels. These spin and orbital degrees
of freedom generate very interesting polarization effects.
They, however, lead to heavy notations which are wise to
avoid in a first work.

The semiconductor Hamiltonian can be written as

H = Hkin + Ve-ion + Vee + Vion-ion. �2.1�

The one-body operator Hkin describes the electron kinetic
energy,

Hkin = �
i=1

Ns pi
2

2m
, �2.2�

where m is the free electron mass. The second term of Eq.
�2.1�, which describes the electron-ion Coulomb attraction, is
also a one-electron operator. It reads as

Ve-ion = �
i=1

Ns

�
n=1

Ns − e2

�ri − Rn�
. �2.3�

The third operator Vee describes the Coulomb repulsion
between electrons. This two-body operator is given by

Vee =
1

2�
i�j

� e2

�ri − r j�
. �2.4�

MONIQUE COMBESCOT AND WALTER POGOSOV PHYSICAL REVIEW B 77, 085206 �2008�

085206-2



The last term, Vion-ion, which describes the Coulomb inter-
action between ions, is a constant with respect to the electron
motion. It is, however, necessary to keep it in order to work
with the Hamiltonian of a fully neutral system. This is re-
quired for the convergence of the Coulomb terms in the large
sample limit. We will see below the importance of this point.

B. Conceptual difference between Wannier and Frenkel
excitons

1. Wannier excitons

Wannier excitons are constructed on delocalized electrons
excited from the valence band to the conduction band. These
semiconductor bands result from the periodic ionic structure
of the semiconductor lattice. A simple way to make these
bands appear is to add and substract a one-electron operator,

V̄ee = �
i

v̄ee�ri� , �2.5�

to the semiconductor Hamiltonian H. Although arbitrary, V̄ee
physically represents a mean electron-electron interaction.
We will show below the appropriate way of choosing it.

This leads us to rewrite the semiconductor Hamiltonian H
�given by Eq. �2.1�� as

H = H0
�W� + VCoul, �2.6�

where VCoul, usually called the “semiconductor Coulomb in-
teraction,” corresponds to the difference

VCoul = Vee − V̄ee.

The zero order Hamiltonian for Wannier excitons H0
�W� is a

sum of one-electron operators. It can thus be written as

H0
�W� = Hkin + Ve-ion + V̄ee + Vion-ion = �

i

hi
�W�, �2.7�

where the one-electron operator hi
�W� is given by

hi
�W� =

pi
2

2m
+ �

n

− e2

�ri − Rn�
+ v̄ee�ri� +

1

Ns
Vion-ion =

pi
2

2m
+ v�ri� .

�2.8�

This one-electron operator has the lattice periodicity if v̄ee�r�
is chosen with such a periodicity. Besides this requirement,
we must also enforce v̄ee�r� to be such that the resulting
interaction v�r� defined in Eq. �2.8� fulfills

� dr v�r� = 0 �2.9�

in order for H0
�W� to be the Hamiltonian of a fully neutral

system. The simplest choice for v̄ee�r� is to take it as a con-
stant, through the so-called positive jellium, namely, v̄ee�r�
=Ns

−1Vion-ion.
Due to the periodicity of the potential v�r�, the eigenstates

of hi
�W� are made of delocalized states separated by band

gaps. The relevant ones for the physics of Wannier excitons
belong to the last filled band, called the valence band, and

the first empty band, called the conduction band. Close to
these band extrema, the eigenstate energies can be written as
�+�2k2 /2mc and �2k2 /2mv, where � is the band gap, while
mc and mv are the electron masses for the conduction and
valence bands dressed by the lattice periodic potential. Note
that the effective mass for valence electrons, which are close
to a maximum, is negative, so that the resulting valence hole
mass, defined as mh=−mv, is positive.

The eigenstates ��k	 of the Hamiltonian hi
�W� with � equal

to v or c for valence and conduction states,

�hi
�W� − ��k���k	 = 0, �2.10�

are then used as a one-electron basis to rewrite the semicon-
ductor Hamiltonian H in the second quantization.

2. Frenkel excitons

The situation for Frenkel excitons is totally different:
while Wannier excitons are constructed on delocalized va-
lence and conduction electron states, the physical picture of
the semiconductor excitations giving rise to Frenkel excitons
is a set of electrons tight to their ions, these electrons switch-
ing from the atomic ground state to the atomic first excited
level. Consequently, the physically relevant one-electron
states for Frenkel excitons are not the free �delocalized� elec-
trons in a periodic lattice used in the case of Wannier exci-
tons but instead the electron localized atomic states associ-
ated with the various ion sites.

In order to make these physically relevant atomic states
appear, we are led to perform a grouping of terms in the
semiconductor Hamiltonian H �given in Eq. �2.1�� different
from the one we have done for Wannier excitons. This new
grouping of terms is

H = H0
�F� + Ve-e + Vion-ion. �2.11�

The zero order Hamiltonian for Frenkel excitons H0
�F� is still

a one-electron operator, but it now contains the electron ki-
netic contribution plus the electron-ion potential, so that it
differs from the zero order Hamiltonian for Wannier excitons
H0

�W�. It precisely reads as

H0
�F� = Hkin + Ve-ion = �

i

hi, �2.12�

where hi is now given by

hi =
pi

2

2m
− �

n=1

Ns e2

�ri − Rn�
. �2.13�

C. Atomic states

We can note that, in the one-electron Hamiltonian hi, the
interactions of the electron i with all the ions n enter, so that
hi differs from a simple atomic Hamiltonian. Nevertheless, it
is rather clear that the physically relevant one-electron states
for Frenkel excitons are going to be these atomic states, i.e.,
the eigenstates of one electron in the presence of one ion. Let
us introduce them.

�i� The atomic states ��	 for one ion located at R=0, as-
sociated with the Hamiltonian

MICROSCOPIC DERIVATION OF FRENKEL EXCITONS IN… PHYSICAL REVIEW B 77, 085206 �2008�

085206-3



hatom =
p2

2m
−

e2

r
, �2.14�

are such that

�hatom − �����	 = 0, �2.15�

their wave functions being ���r�= 
r ��	. As the Hamiltonian
eigenstates form an orthogonal set, we do have


����	 =� dr���
* �r����r� = ����. �2.16�

�ii� If we still consider one ion but located at Rn instead of
R=0, the corresponding atomic Hamiltonian reads as

h�n� =
p2

2m
−

e2

�r − Rn�
. �2.17�

Due to translational invariance, the eigenstates of h�n� in
terms of the atomic Hamiltonian states ��� , ��	� read as

�h�n� − �����n	 = 0,

their wave function being such that


r��n	 = ��n�r� = ���r − Rn� . �2.18�

For a given ion Rn, the bound and extended states of the
Hamiltonian h�n� form a complete basis for one-electron
states, so that we do have


n����n	 = ����, �2.19a�

I = �
�

��n	
n�� , �2.19b�

with the sum restricted to the atomic levels �.
�iii� If we now turn to the Hamiltonian H0

�F� �given in Eq.
�2.13��, we see that it differs from a bare sum of atomic
Hamiltonians, since each electron feels the interaction of all
the other ions. This is a real difficulty: unlike Wannier exci-
tons, in which the eigenstates of H0

�W� can be obtained ex-
actly, the diagonalization of the one-body part of H0

�F� for
Frenkel excitons can only be approximated due to this mul-
tiple ion interaction. As shown below, this will force us to
make assumptions on the atomic wave function extensions,
the Frenkel exciton picture being appropriate when the tight-
binding approximation is valid.

Due to the sum over all ions contained in the one-body
Hamiltonian H0

�F� given in Eq. �2.13�, it is, on the one hand,
clear that the states ��n	 for a fixed n=n0 �which form a
complete set for one-electron states due to Eqs. �2.19a� and
�2.19b�� cannot be a physically relevant basis to describe
Frenkel excitons made of excitations on all possible ion sites.
On the other hand, it is also clear that if we leave n running
over all the ion positions, the states ��n	 for all � and all n
form an overcomplete set—the states ��n	 for one particular
n forming a complete set already. As a bare consequence of
this overcompleteness, the states ��n	 with different n are not
exactly orthogonal.

We can, however, note that, for atomic states � and ��
highly localized compared to the ion-ion distance, the wave

function overlap between different atoms is essentially zero,

���
* �r − Rn�����r − Rn� � 0 for n� � n , �2.20�

whatever r is. Consequently, the scalar product of such
atomic states reduces to


n�����n	 =� dr���
* �r − Rn�����r − Rn� � �n�n����

�2.21�

due to Eq. �2.16�: The states ��n	 for highly localized � are
thus quasiorthogonal.

�iv� In spite of these difficulties, linked to the overcom-
pleteness of the states ��n	 with n running over all ion sites,
the ��n	 states have to play a role in the Frenkel exciton
physics. This is why we are going to use them in the second
quantization description of Frenkel excitons.

Before going further, let us add some comments on using
these states ��n	 as a basis for second quantization. It is clear
that Eq. �2.20� is not valid for atomic extended states nor
even for the highest bound levels. The states ��n	 can, how-
ever, be seen as an acceptable basis for one-electron states if
the problem at hand relies on the highly localized �lowest�
atomic states for which the overlaps between atomic wave
functions for different ions are negligible. This is actually the
case for conventional Frenkel excitons in which the � of
interest reduce to the ground state ��=0� and the first excited
state ��=1�.

A somewhat cleaner way to present the use of these over-
complete states ��n	 is to say that we can always add to the
two sets of atomic states of physical interest, namely, ��
=0,n	 and ��=1,n	, other states constructed “in an appropri-
ate way” in order to form a complete orthogonal basis when
added to the set of two states ��= �0,1� ,n	. In problems
physically controlled by the two lowest atomic states, these
additional “appropriate states” are not going to play a role in
the final results. This is why it is far simpler not to consider
them at all and to stay with the full overcomplete set of states
��n	 for all n and all �, the � different from �0,1� playing no
role in the end. As a direct consequence, in the following, the
sums over � will have to be considered as sums over �
= �0,1�.

III. FRENKEL EXCITON HAMILTONIAN IN THE
SECOND QUANTIZATION

A. One-electron creation operators relevant to Frenkel
excitons

Let a�n
† be the creation operator for the atomic state ��n	

on site n and atomic level �,

��n	 = a�n
† �v	 . �3.1�

Since the state ��n	 can be expanded on the plane wave
basis �k	 as ��n	=�k�k	
k ��n	, the atomic state creation op-
erator a�n

† in terms of the free electron creation operator ak
†

reads as

a�n
† = �

k
ak

†
k��n	 . �3.2�
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By using the fact that the electron operators anticommute,
�ak ,ak�

† �+=�kk�, it is easy to show, using the above relation,
that the anticommutator for atomic state destruction opera-
tors is exactly zero,

�a��n�,a�n�+ = 0, �3.3�

while for the lowest highly localized states �= �0,1�, we do
have �due to Eq. �2.21��

�a��n�,a�n
† �+ = �

k

��n��k	
k��n	 = 
��n���n	 � �����n�n,

so that, within the tight-binding approximation, the operators
a�n

† follow the standard commutation relations for fermion
operators.

B. One-body part of the Frenkel exciton Hamiltonian

Let us now use these operators to rewrite the part H0
�F� of

the semiconductor Hamiltonian given by Eq. �2.12�. Since
H0

�F� is a sum of one-body operators, it can be written in
terms of the creation operators for the one-electron states
��n	 relevant to Frenkel excitons as

H0
�F� = �

��n��n

����n�,�n�a��n�
† a�n. �3.4�

According to the second quantization procedure, the
prefactor ����n� ,�n� is given by

����n�,�n� =� dr���n�
* �r�� p2

2m
− �

m=1

Ns e2

�r − Rm����n�r� .

�3.5�

Due to Eq. �2.18�, this prefactor also reads as

����n�,�n� =� dr���n�
* �r���� − �

m�n

e2

�r − Rm����n�r� ,

�3.6�

so that, for highly localized states, as the ones of physical
interest, it reduces �due to Eq. �2.20�� to

����n�,�n� � �nn�������� + v���,��� , �3.7�

where v��� ,�� comes from the interactions with all the other
ions. Due to the translational invariance of the Hamiltonian
leading to Eq. �2.18�, v��� ,�� can be rewritten as

v���,�� = �
m�n

� dr���
* �r� �

m�n

− e2

�r − �Rm − Rn��
���r�

=
��� �
R�0

− e2

�r − R���� , �3.8�

where the vectors R in the sum correspond to all possible
distances between ions. The one-body part of the semicon-
ductor Hamiltonian appropriate to Frenkel excitons then ends
by reading as

H0
�F� = �

�,n
�̃�a�n

† a�n + �
n,����

v���,��a��n
† a�n, �3.9�

where �̃�=��+v�� ,��. As seen from the definition of
v��� ,��, given by Eq. �3.8�, the second term in H0

�F� de-
scribes the fact that the electron of a given site can change its
atomic level from � to �� while staying on the same site, due
to its interaction with the ions of all the other sites. For states
�= �0,1� highly localized compared to the ion-ion distance,
these v��� ,�� scatterings, however, are extremely small.

C. Electron-electron interaction

Let us now turn to the two-body operator Vee �defined in
Eq. �2.4��. The standard second quantization procedure leads
us to write it on the atomic basis ��n	 as

Vee =
1

2 �
��,n�

V��2�n2� �2n2

�1�n1� �1n1
�a

�1�n1�
† a

�2�n2�
† a�2n2

a�1n1
,

�3.10�

where the prefactor is given by

V��2�n2� �2n2

�1�n1� �1n1
� =� dr1dr2�

�1�n1�
* �r1��

�2�n2�
* �r2�

	
e2

�r1 − r2�
��2n2

�r2���1n1
�r1� .

�3.11�

For � and �� equal to �0,1�, this prefactor is nonzero for
n1�=n1 and n2�=n2 only due to Eq. �2.20�. If we then use the
translational invariance of atomic wave functions �namely,
Eq. �2.18��, it is easy to see that Vee can be written as

Vee =
1

2 �
n1�1��1

n2�2��2

VRn1
−Rn2

��2� �2

�1� �1
�a

�1�n1

† a
�2�n2

† a�2n2
a�1n1

,

�3.12�

where the electron-electron scattering depends on the dis-
tance R between ions through

VR��2� �2

�1� �1
� = V−R��1� �1

�2� �2
�

=� dr1dr2�
�1�
* �r1��

�2�
* �r2�

	
e2

�r1 − r2 + R�
��2

�r2���1
�r1� . �3.13�

D. Restricted Hamiltonian for Frenkel excitons

The atomic states ��=0,n� and ��=1,n� are the equiva-
lents of the valence and the conduction band states for Wan-
nier excitons. By noting that the energy of the atomic ground
state ��=0 is very different from the one of the first excited
level, ��=1, we are led to think that the physically relevant
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part of the Hamiltonian corresponds to processes in which
the number of electrons in the �=0 level and the number of
electrons in the �=1 level are separately conserved. This is
equivalent to processes which keep the number of conduc-
tion electrons and the number of valence electrons fixed for
Wannier excitons. This leads us to drop terms with ���� in
H0

�F�. The latter then reduces to the first sum of Eq. �3.9�,
namely,

H0
�F� � H0 = �̃0�

n

a0n
† a0n + �̃1�

n

a1n
† a1n. �3.14�

If we now turn to the Coulomb interaction Vee �given in
Eq. �3.12�� and we also keep terms which conserve the num-

ber of �=0 and �=1 electrons separately, we see that they
are of two kinds. �i� Vee contains intra-atomic processes, in
which the electron of a given site stays on the same level.
These processes correspond to terms such as a�n

† a�n�
† a�n�a�n

with � equal to 0 or 1. Vee also contains terms such as
a0n

† a1n�
† a1n�a0n with 0 and 1 possibly exchanged—which

makes such a term appear with a factor of 2. �ii� In addition,
Vee contains interatomic processes, in which the electron of
one site jumps from �=0 to �=1, while the electron of an-
other site goes from �=1 to �=0, namely, terms such as
a0n

† a1n�
† a0n�a1n, with 0 and 1 possibly exchanged—which

makes this term also appear with a factor of 2.
Consequently, Vee for Frenkel excitons ends by reading

Vee�V00+V11+V01
dir+V01

exch with

V00 =
1

2 �
n1�n2

VRn1
−Rn2

�0 0

0 0
�a0n1

† a0n2

† a0n2
a0n1

,

V11 =
1

2 �
n1�n2

VRn1
−Rn2

�1 1

1 1
�a1n1

† a1n2

† a1n2
a1n1

,

V01
dir = �

n1n2

VRn1
−Rn2

�1 1

0 0
�a0n1

† a1n2

† a1n2
a0n1

,

V01
exch = �

n1n2

VRn1
−Rn2

�0 1

1 0
�a1n1

† a0n2

† a1n2
a0n1

. �3.15�

Note that the last two terms differ from zero for n1=n2,
while the first two terms are equal to zero for n1=n2; this is
why we have explicitly excluded n1=n2 from the first two
sums.

These four terms are shown in Fig. 1.

IV. ELECTRON-HOLE HAMILTONIAN FOR FRENKEL
EXCITONS

A. Electron and hole creation operators

As for Wannier excitons, it is appropriate to introduce the
concept of a hole. This will allow us to start with a �0	 state,
in which the electrons of all sites are in the atomic ground
state ��=0�, and to speak in terms of excitations with respect
to this ground state, i.e., in terms of the small number of sites
in which the electron has jumped into the excited state, this
number being 1 for one exciton, 2 for two excitons, and so
on. Such an elementary electron-hole excitation is shown in

n2 n1

1

0

(a)

n2

1

0

n1

(b)

n2

n1

1

0

(c)

n2

1

0

n1

(d)

FIG. 1. Electron-electron potentials �given in Eq. �3.15��. �a�
Terms in a0n1

† a0n2

† a0n2
a0n1

, in which the two electrons stay in their
atomic ground state �=0. �b� Terms in a1n1

† a1n2

† a1n2
a1n1

, in which
the two electrons stay in their atomic excited state �=1. �c� Terms
in a0n1

† a1n2

† a1n2
a0n1

, in which one electron stays in the ground state,
while the another one stays in the excited state. �d� Terms in
a1n1

† a0n2

† a1n2
a0n1

, in which the electron on site n1 is excited from the
ground state �=0 to the excited state �=1, while the electron on site
n2 returns to its ground state. In these four processes, the number of
electrons in the ground state and in the excited state are separately
conserved.

n2

1

0

n1

n2

1

0

n1

=

FIG. 2. Excitation of an electron from the ground state on site n1

to the excited state on site n2: this corresponds to the creation of an
electron-hole pair on sites �n2, n1�.
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Fig. 2. Due to the electron-hole attraction and the cost in
electrostatic energy induced by the electron and hole separa-
tion, we expect the lowest energy excited states to corre-
spond to n1=n2. As a direct consequence, the Frenkel exci-
tons are going to be made from electron-hole pairs on the
same site. Let us now recover this obvious result.

In the absence of spin degrees of freedom, the electron
and hole creation operators are simply linked to the �=0 and
�=1 atomic state level creation operators through

a1n
† = an

†,

a0n = bn
†. �4.1�

By using the anticommutation relations for electrons in
atomic states given by Eq. �3.3�, it is straightforward to show
that �an� ,an�+=0, while

�an�,an
†�+ = �a1n�,a1n

† �+ = 
1n��1n	 � �nn� �4.2�

for highly localized atomic states compared to the inter-
atomic distance, which makes Eq. �2.21� valid. In the same
way, �bn� ,bn�+=0, while

�bn�,bn
†�+ = �a0n�

† ,a0n�+ = 
0n��0n	 � �n�n. �4.3�

If we now turn to the anticommutator between electron
and hole operators, we find that

�an�,bn
†�+ = �a1n�,a0n�+ = 0,

�an�,bn�+ = �a1n�,a0n
† �+ = 
1n��0n	 � 0 �4.4�

for highly localized atomic states, this last anticommutator
being exactly equal to zero for n=n� due to Eq. �2.19a�.

B. One-body operator H0 in terms of electrons and
holes

In order to rewrite the part H0 of the Frenkel exciton
Hamiltonian given in Eq. �3.14� in terms of electron and hole
operators, we first note that a0n

† a0n=bnbn
†=1−bn

†bn, so that

H0 = Ns�̃0 + �
n

��̃1an
†an − �̃0bn

†bn� . �4.5�

Due to other contributions in an
†an and bn

†bn coming from the
electron-electron interaction, the electron energy and the hole
energy are going to differ from �̃1 and �−�̃0�, as will now be
shown.

C. Electron-electron interaction in terms of electrons and
holes

We now turn to the electron-electron interactions given in
Eq. �3.15�. Since a1n=an, the second term of this equation
�shown in Fig. 3�a�� readily gives the Coulomb repulsion
between two electrons as

V11 = Ṽee =
1

2 �
n1�n2

VRn1
−Rn2

�1 1

1 1
�an1

† an2

† an2
an1

. �4.6�

In order to rewrite the third term of Eq. �3.15�, we first
note that a0n1

† a1n2

† a1n2
a0n1

=bn1
an2

† an2
bn1

† =an2

† an2
�1−bn1

† bn1
�, so

that this third term gives two contributions,

V01
dir = Veh

�dir� + �
n2

an2

† an2�
n1

VRn1
−Rn2

�1 1

0 0
� . �4.7�

The second term of V01
dir, which comes from the Coulomb

interaction between one electron in an atomic excited level
and all the atomic ground states, is going to dress the bare
electron energy �̃1 �appearing in Eq. �4.5��. The first term of
V01

dir, given by

Veh
�dir� = − �

n1n2

VRn1
−Rn2

�1 1

0 0
�bn1

† an2

† an2
bn1

, �4.8�

describes a direct electron-hole attraction, the electron and
the hole staying on their sites �see Fig. 3�c��.

n1

e

h

n2

(a)

n2

e

h

n1

(b)

n1

n2

e

h

(c)

n1 n2

e

h

(d)

FIG. 3. �a� Electron-electron interaction Ṽee �given in Eq. �4.6��.
�b� Hole-hole interaction Ṽhh �given in Eq. �4.13��. �c� Direct
electron-hole interaction Veh

�dir� �given in Eq. �4.8��. �d� Exchange
electron-hole interaction Veh

�exch� �given in Eq. �4.10��.
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In the same way, the fourth term of Eq. �3.15� gives
two contributions since a1n1

† a0n2

† a1n2
a0n1

=an1

† bn2
an2

bn1

†

=−an1

† ��n2n1
−bn1

† bn2
�an2

, so that it reads as

V01
exch = Veh

�exch� − VR=0�0 1

1 0
��

n

an
†an. �4.9�

The second term of V01
exch is also going to dress the electron

energy �̃1, while the first term, given by

Veh
�exch� = �

n1n2

VRn1
−Rn2

�0 1

1 0
�an1

† bn1

† bn2
an2

�4.10�

and shown in Fig. 3�d�, corresponds to the destruction of one
electron-hole pair on the site n2 and to its recreation on the
site n1. Let us stress that, while the direct electron-hole Cou-
lomb interaction Veh

�dir� in Eq. �4.8� corresponds to an attrac-
tion, this exchange electron-hole Coulomb interaction Veh

�exch�

is repulsive.
We now turn to the first term of Eq. �3.15� between two

ground state electrons �=0. We first note that, due to Eqs.
�3.3� and �3.4�,

a0n1

† a0n2

† a0n2
a0n1

= bn1
bn2

bn2

† bn1

†

= 1 − bn1

† bn1
− bn2

† bn2
+ bn2

† bn1

† bn1
bn2

,

�4.11�

so that, by grouping the two terms with a minus sign, V00
generates three contributions,

V00 =
1

2 �
n1�n2

VRn1
−Rn2

�0 0

0 0
�

− �
n

bn
†bn �

n��n

VRn−Rn�
�0 0

0 0
� + Ṽhh. �4.12�

The last term of V00, shown in Fig. 3�b�, corresponds to a
hole-hole repulsion. It precisely reads as

Ṽhh =
1

2 �
n1�n2

VRn1
−Rn2

�0 0

0 0
�bn1

† bn2

† bn2
bn1

. �4.13�

The first term of V00 is a bare constant which describes all
Coulomb interactions between ground state atomic levels. It
produces a band gap renormalization. The second term of V00
comes from the interaction between one particular ground
state electron �in the site n� and the other ground state elec-
trons. This term has to appear when the site n is empty, i.e.,
occupied by a hole, in order to compensate for the electron-
electron repulsion already included in the constant term of
V00. This second term is going to dress the atomic ground
state energy �̃0 �when speaking in terms of holes� as fully
reasonable, since all interactions between atomic ground
state electrons are by construction forgotten when we turn to
electrons and holes. These interactions actually appear
through the renormalization of the atomic ground state and
excited state energies, the electron and the hole being more
subtle objects that just one electron in the atomic excited
state and one electron absence in the atomic ground state.

D. Electron-hole Hamiltonian

If we now collect all these terms, we end by writing the
part of the semiconductor Hamiltonian appropriate to Fren-
kel excitons H0+V00+V11+V01

dir+V01
exch+Vion-ion as

H�F� = � + Heh + Vintra + Vinter. �4.14�

�i� � is a constant which contains contributions from the
atomic level ground states only. It precisely reads as

� = Ns�0 + Nsv�0,0� +
1

2 �
n1�n2

VRn1
−Rn2

�0 0

0 0
�

+
1

2 �
n1�n2

e2

�Rn1
− Rn2

�

= Ns��0 + �0
�Coul�� , �4.15�

where Ns is the number of ion sites. By using Eqs. �3.8� and
�3.13�, the Coulomb contribution to this band gap renormal-
ization �given by the bracket of the above expression� can be
rewritten as

�0
�Coul� = �

R�0
� drdr���0�r��2��0�r���2� − e2

�r − R�

+
1

2

e2

�r − r� − R�
+

1

2

e2

R
� , �4.16�

where the R’s are the possible distances between two ions.
Note that the last term �e2 /R�, which comes from the ion-ion
interaction and which makes the system at hand neutral, al-
lows for the convergence of �0

�Coul� in the large sample limit.
�ii� The second term of Eq. �4.14� is a one-body operator

which can be written as

Heh = �e�
n

an
†an + �h�

n

bn
†bn. �4.17�

It describes the electron and hole kinetic energies. These en-
ergies, given by

�e = �1 + v�1,1� + �
R

VR�1 1

0 0
� − VR=0�0 1

1 0
� ,

�4.18�

− �h = �0 + v�0,0� + �
R�0

VR�0 0

0 0
� , �4.19�

differ from the atomic bare ground and excited state energies
−�0 and �1 due to Coulomb interactions with all the atomic
ground states. These contributions have to appear when we
speak in terms of holes since all Coulomb interactions
among these atomic ground state levels are then forgotten by
construction.

�iii� The third term Vintra of Eq. �4.14� corresponds to
Veh

�dir�+Veh
�exch� taken for n1=n2. It precisely reads as

Vintra = − ��
n

an
†bn

†bnan, �4.20�

where −� is given by
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− � = − VR=0�1 1

0 0
� + VR=0�0 1

1 0
� . �4.21�

By using the Coulomb matrix elements �given in Eq.
�3.13��, we see that this quantity also reads as

� =� dr1dr2��1
*�r2��0

*�r1� − �0
*�r2��1

*�r1��

	
e2

�r1 − r2�
�1

*�r2��0
*�r1� . �4.22�

This shows that � is a positive constant, since 
� ��	=1,
while 
0 �1	=0. This energy � physically corresponds to the
energy decrease when the site n is occupied by an electron-
hole pair, i.e., when the site n is neutral. This is going to
make the potential Vintra responsible for the fact that excitons
are made from linear combinations of electrons and holes
located on the same site.

�iv� The last term of Eq. �4.14� Vinter is made of all Cou-
lomb interactions between sites. It contains the electron-

electron and hole-hole contributions Ṽee and Ṽhh given by
Eqs. �4.6� and �4.13�, which are interactions between sites by
construction, since a given site cannot accommodate two
electrons or two holes due to the Pauli exclusion principle. It
also contains the part of the direct electron-hole potential
Veh

�dir�, taken for n1�n2. Using Eq. �4.8�, this direct electron-
hole exchange interaction between sites precisely reads as

Ṽeh
�dir� = − �

n1�n2

VRn1
−Rn2

�1 1

0 0
�bn1

† an2

† an2
bn1

. �4.23�

It finally contains the part of the electron-hole exchange po-
tential Veh

�exch� given in Eq. �4.10�, also taken for n1�n2. This
part has a very special role since it allows the excitation
transfer from one site to the other. Let us isolate this transfer
term from the other Coulomb terms and call it Vtrans,

Vtrans = �
n1�n2

VRn1
−Rn2

�0 1

1 0
�an1

† bn1

† bn2
an2

. �4.24�

All these lead us to write Vinter in Eq. �4.14� as

Vinter = Vtrans + VCoul,

VCoul = Ṽee + Ṽhh + Ṽeh
�dir�. �4.25�

The four contributions of this Vinter operator are shown in
Fig. 4, with �n1↔n2� exchanged.

E. Discussion

The expression of the semiconductor Hamiltonian appro-
priate to Frenkel exciton H�F� in terms of electrons and holes
�given in Eq. �4.14�� allows an easy comparison between
highly localized states leading to Frenkel excitons and ex-
tended states leading to Wannier excitons. We first see that
the electron and the hole energies for Frenkel excitons ap-
pearing in Heh are constant, while they depend on k for Wan-
nier excitons: the electrons and holes for Wannier excitons,

which belong to the conduction and valence bands, are delo-
calized over the whole sample, so that their energies must
depend on momentum. In addition, the “electron-hole ex-
change,” i.e., the possibility for one electron-hole pair to
recombine while another pair is created, plays essentially no
role for Wannier excitons: it is just responsible for a small
splitting between Wannier excitons when the spin degrees of

n1

n2

n2

n1

(a)

n2 n2

n1 n1

(b)

n2 n2

n1 n1

(c)

n2 n2

n1 n1

(d)

FIG. 4. Interaction between sites, described by Vinter, given in
Eq. �4.25�. �a� The part Vtrans �given in Eq. �4.24�� describes the
destruction of an electron-hole pair on site n1 and its recreation on
site n2. �b� Direct interactions between two electrons, corresponding

to Ṽee �given in Eq. �4.6��, �c� between two holes, corresponding to

Ṽhh �given in Eq. �4.13��, and �d� between one electron and one

hole, corresponding to Ṽeh
�dir� �given in Eq. �4.23��.
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freedom are included, the dark excitons S= 
2 achieving the
lowest energy. On the contrary, this electron-hole exchange
is crucial in the case of highly localized states as it is the
only process which allows an excitation transfer between
sites: this makes the operator Vtrans entirely responsible for
the Frenkel exciton formation, as we will now show.

V. LOWEST EXCITED STATES IN THE ABSENCE OF
INTERACTION BETWEEN SITES

Let us first forget the interactions between sites. The
Hamiltonian H�F� �given in Eq. �4.14�� then reduces to

Hpair = Heh + Vintra �5.1�

if we drop the irrelevant band gap renormalization �.

A. Ground state and lowest excited states

The ground state of Hpair has zero electron-hole pair. Let
us call it �0	 and choose its energy as 0.

If we now consider the one electron-hole pair state
an

†bn�
† �0	 with an electron on site n and a hole on site n�, we

see that its energy is �e+�h for n�n�, while it is �e+�h−�
for n=n�. Since � is positive, the lowest excited states of
Hpair thus have one electron-hole pair on the same site. They
read as

�Hpair − Epair��Rn	 = 0,

�Rn	 = an
†bn

†�0	 = Bn
†�0	 , �5.2�

with Epair=�e+�h−�. These states form an Ns-degenerate
subspace since n can run from 1 to Ns.

B. Commutation rules

Using the anticommutation rules for electrons and holes
given in Eqs. �4.2� and �4.4�, it is easy to show that the
electron-hole pair operators Bn

† behave as bosons with respect
to the destruction operators since their commutator reads as

�Bn�,Bn�− = 0, �5.3�

while they are composite bosons only since the other com-
mutator is such that

�Bn�,Bn
†�− = �n�n − Dn�n, �5.4�

the deviation-from-boson operator for electron-hole pairs be-
ing equal to

Dn�n = �n�n�an
†an + bn

†bn� . �5.5�

As standard for deviation-from-boson operator, Dn�n gives
0 when acting on the electron-hole pair vacuum.

VI. FRENKEL EXCITONS

If in the Frenkel exciton Hamiltonian H�F�, we now keep
the coupling between sites, Vinter=Vtrans+VCoul �defined in
Eq. �4.25��, we induce nondiagonal contributions between
different sites. They split the degenerate subspace �Rn	. The

Frenkel excitons result from the diagonalization of the
Hamiltonian H�F� in this �Rn	 degenerate subspace.

A. Derivation of the Frenkel excitons

Since the states �Rn	 have one electron-hole pair only, the

electron-electron and hole-hole parts Ṽee and Ṽhh of VCoul
�defined in Eq. �4.25�� give zero when acting on �Rn	. The

direct electron-hole interaction Ṽeh
�dir� �given in Eq. �4.23��

also gives zero since bn2
an1

�Rn	=0 for n1�n2. Consequently,
VCoul�Rn	=0, so that the only part of Vinter that plays a role in
the diagonalization of H�F� in the �Rn	 subspace is the
electron-hole exchange term Vtrans. Since bn2

an2
an

†bn
†�0	

=�n2n�0	, we readily find

Vtrans�Rn	 = �
n1�n

VRn1
−Rn

�0 1

1 0
��Rn1

	 . �6.1�

This shows that, if we drop the irrelevant constant �, the
Frenkel exciton Hamiltonian H�F� acting on �Rn	 reduces to

HX
�0� = Hpair + Vtrans,

HX
�0��Rn	 = Epair�Rn	 + �

n1�n

VRn1
−Rn

�0 1

1 0
��Rn1

	 . �6.2�

Let us now show that the following linear combinations
of �Rn	:

�XQ	 =
1

�Ns
�
n=1

Ns

eiQ·Rn�Rn	 , �6.3�

known as Frenkel excitons, are the exact eigenstates of the
Hamiltonian HX

�0�. To prove it, we first consider Vtrans acting
on �XQ	,

Vtrans�XQ	 =
1

�Ns
�

n

eiQ·Rn �
n��n

VRn�−Rn
�0 1

1 0
��Rn�	 ,

�6.4�

which also reads as

Vtrans�XQ	 =
1

�Ns
�
n�

�Rn�	 �
n�n�

eiQ·RnVRn�−Rn
�0 1

1 0
� .

�6.5�

In order to calculate the last sum, we rewrite it as

�
n�n�

eiQ·RnVRn�−Rn
�0 1

1 0
�

= eiQ·Rn� �
n�n�

eiQ·�Rn−Rn��VRn�−Rn
�0 1

1 0
� . �6.6�

Due to the invariance of the system, the sum in the right
hand side cannot depend on n�; so that the above equation
leads us to
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�
n�n�

eiQ·RnVRn�−Rn
�0 1

1 0
� = eiQ·Rn� �

R�0
e−iQ·RVR�0 1

1 0
� ,

�6.7�

where the sum is taken over all possible distances R between
ions. When inserted into Eq. �6.5�, this readily leads to

Vtrans�XQ	 = �XQ	 �
R�0

e−iQ·RVR�0 1

1 0
� , �6.8�

so that we end with

HX
�0��XQ	 = EQ�XQ	 , �6.9�

where the eigenenergy is given by

EQ = Epair + �
R�0

e−iQ·RVR�0 1

1 0
� . �6.10�

The above equation shows that the splitting of the Ns degen-
erate states �Rn	 into Ns states �XQ	 is only due to the
electron-hole exchange Vtrans between different sites: Vtrans is
the only part of the Hamiltonian allowing for an excitation
transfer from site to site, as necessary for the delocalization
of the excitation corresponding to Frenkel excitons.

B. Frenkel exciton creation operator

Equation �6.3� leads to write the Frenkel exciton creation
operator BQ

† defined as �XQ	=BQ
† �0	 in terms of the creation

operators Bn
†=an

†bn
† for one electron-hole pair on site n as

BQ
† =

1
�Ns

�
n=1

Ns

eiQ·RnBn
†. �6.11�

In the same way as free electron-hole pairs can be written in
terms of Wannier excitons, it is possible to write electron-
hole pairs localized on site n in terms of Frenkel excitons.
This is barely done by noting that

1
�Ns

�
Q

e−iQ·RnBQ
† =

1

Ns
�

n�=1

Ns

Bn�
† �

Q
eiQ·�Rn�−Rn� = Bn

†,

�6.12�

since the sum over Q is equal to 0 for n��n and to Ns for
n�=n.

These Frenkel excitons are expected to be composite
bosons. This is easily seen from their commutation rules. By
using Eq. �5.3� for electron-hole pairs on site n, we readily
find

�BQ�,BQ�− = 0. �6.13�

If we now turn to the other commutator, it reads as

�BQ�,BQ
† �− =

1

Ns
�

n�=1

Ns

�
n=1

Ns

e−iQ�·Rn�eiQ·Rn�Bn�,Bn
†�−.

�6.14�

We then use Eq. �5.4� for the commutator �Bn� ,Bn
†�−. The

term in �nn� gives Ns
−1�nei�Q−Q��·Rn, which is equal to 0 for

Q�Q� and 1 for Q=Q�, so that we end with

�BQ�,BQ
† �− = �Q�Q − DQ�Q, �6.15�

where the deviation-from-boson operator DQ�Q for Frenkel
excitons, which comes from the deviation-from-boson opera-
tor for electron-hole pairs Dn�n appearing in �Bn� ,Bn

†�−, reads
as

DQ�Q =
1

Ns
�
n=1

Ns

ei�Q−Q��·Rn�an
†an + bn

†bn� . �6.16�

We can note that, as for Wannier excitons, this deviation-
from-boson operator gives 0 when acting on the pair vacuum
state,

DQ�Q�0	 = 0. �6.17�

This leads us to conclude that, in order to describe the
interactions between Frenkel excitons properly, it is neces-
sary to follow a path similar to the one we have used for
Wannier excitons, namely to define the Pauli scatterings of
two Frenkel excitons for carrier exchanges without Coulomb
interaction and the Coulomb scatterings of two Frenkel ex-
citons for carrier interactions without carrier exchange. As
for Wannier excitons, the composite nature of the Frenkel
excitons makes a clean description of the interactions be-
tween two excitons as a potential impossible, the only well-
defined quantity again being the “creation potential” of the Q
exciton. The calculation of these Pauli and Coulomb scatter-
ings for Frenkel excitons �necessary to handle their many-
body physics properly� will be done in a forthcoming publi-
cation.

C. Interacting Frenkel exciton Hamiltonian

If we have more than one electron-hole pair, the Coulomb
part VCoul of the Frenkel exciton Hamiltonian �given in Eq.
�4.23�� is going to play a role. This leads us to rewrite H�F� as
H�F�=HX with

HX = HX
�0� + VCoul, �6.18�

where HX
�0� �given in Eq. �6.2�� corresponds to the pair

Hamiltonian Hpair plus the part of the Coulomb interaction
Vtrans allowing for the excitation transfer.

The remaining part VCoul �given in Eq. �4.25�� corre-
sponds to all direct Coulomb interactions between two elec-
trons, two holes, and one electron and one hole in different
sites. This operator is going to generate all many-body ef-
fects between excitons induced by Coulomb interactions. In
addition to them, as for Wannier excitons, many-body effects
induced by Pauli exclusion through the fact that Frenkel ex-
citons are not elementary bosons, also exist. The scatterings
associated with VCoul and to the deviation-from-boson opera-
tors will be calculated in a forthcoming publication.

VII. STATE OF THE ART

As it was mentioned in Sec. I, the second quantization
formalism for Frenkel excitons has already been used in
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Refs. 15–20. In Refs. 15–18, the Hamiltonian of the periodic
molecular crystal is written in terms of creation and destruc-
tion operators for excited states of isolated molecules, while
we here go one step further by introducing an electron-hole
representation conceptually similar to the one commonly
used for Wannier excitons. This step is made in Refs. 19 and
20, which also deal with electron-hole representation. In con-
trast to all these works,15–20 the detailed derivation presented
in this paper allows us to reveal the physical meaning of all
the terms entering the Hamiltonian, with a particular empha-
sis on the transfer term which is responsible for the excita-
tion transfer from site to site. We demonstrate that this term
splits the degenerate subspace Bn

†�0	 where n runs over all
sites. In addition, we introduce exciton creation operator BQ

†

which describes delocalized excitations; we calculate its
commutators and show that this exciton operator represents a
composite boson. In contrast, Refs. 15–20 stay with the Bn

†

operator where Bn
† creates an excitation on site n that is not a

delocalized excitation. The further progress of Refs. 15–20 is
based on rewriting the original fermionic Hamiltonian in
terms of pair operators Bn

† and Bn using certain assumptions.
Within our approach, we stick to the original Hamiltonian
written in terms of fermionic operators. A precise compari-
son between our method and the approaches developed by
Agranovich and co-workers15–17 and Mukamel and
co-worker,19,20 in connection to many-body effects, will be
discussed in a forthcoming publication.

VIII. CONCLUSION

In this paper, we have derived the creation operator for
Frenkel excitons starting from the microscopic Hamiltonian
for free electrons in a periodic lattice. Let us summarize the
main steps of the derivation.

�1� We first isolate one ion located on site n and we in-
troduce the atomic states ��n	, eigenstates for this particular
ion. They form a complete basis for one-electron states.

�2� If we let n run over all sites, the states ��n	 form an
overcomplete set. However, if the states of physical interest
are the two lowest atomic levels ��=0 and �=1�, the states
��n	 with �= �0,1� are essentially orthogonal in the tight-
binding limit, i.e., when the overlaps of the �= �0,1� wave
functions on different sites are negligible. This allows us to
use the ��= �0,1�n	 state as a one-electron basis to describe
Frenkel excitons in second quantization.

�3� The large energy difference between the atomic states
�= �0,1� leads us �in the electron-electron interaction written
in terms of the creation operators a�n

† for these ��n	 states� to
only keep the terms which conserve the number of electrons
in state �=0 and in state �=1 separately.

�4� When written in terms of electron-hole pairs with an
†

=a1n
† and bn

†=a0n, the electron-electron interaction generates

a constant term, which renormalizes the band gap. It also
generates one-body contributions in bn

†bn and an
†an which

dress the �=0 and �=1 atomic levels, the electron and hole
energies differing from the atomic energies due to Coulomb
interaction with a kind of jellium having one electron in the
ground state of each ion site.

�5� Finally, the electron-electron interaction generates a
contribution between sites Vinter given in Eq. �4.22� and an
intrasite contribution Vintra which ensures local neutrality, so
that the lowest excited states have one electron and one hole
on the same site.

�6� The corresponding degenerate subspace an
†bn

†�0	
=Bn

†�0	 with n running over all sites is split by the transfer
part of the contribution between sites Vinter. This transfer part
Vtrans �given by Eq. �4.21��, allows us to transfer the excita-
tion from one site to the other.

�7� The resulting eigenstates obtained by including this
transfer part correspond to a set of delocalized excitations
known as Frenkel excitons. Their creation operators read as

BQ
† =

1
�Ns

�
n=1

Ns

eiQ·RnBn
†,

where Ns is the number of ion sites, these ions being located
at Rn on a periodic lattice, the Q dependence of the energy
being

�
R�0

e−iQ·RVR�0 1

1 0
� .

�8� Frenkel excitons are composite bosons. Their many-
body effects thus have to be handled along a procedure simi-
lar to the one we have used for Wannier excitons. Both types
of excitons predominantly interact through the Pauli exclu-
sion principle between their electron-hole components which
make them differ from elementary bosons and which pro-
duce “Pauli scatterings” which describe carrier exchanges
without carrier interaction. Frenkel excitons also interact
through the VCoul part of the interaction between sites given
in Eq. �4.25�. It contains electron-electron, hole-hole, and
electron-hole direct processes, in which the carriers stay on
their site.

The composite boson many-body theory appropriate to
Frenkel excitons will be presented in a forthcoming publica-
tion, the present work providing the necessary tools to build
such a theory on solid grounds.
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